Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions.

نویسندگان

  • A Kramer
  • R Ritzmann
  • M Gruber
  • A Gollhofer
چکیده

AIM The aim of the present study was to evaluate reactive hops under systematically modified acceleration conditions. It was hypothesized that a high preactivity of the leg extensors and phase-specific adjustments of the leg muscle activation would compensate the alterations caused by the various acceleration levels in order to maintain a high leg stiffness, thus enabling the jumper to perform truly reactive jumps with short ground contact times despite the unaccustomed acceleration conditions. METHODS Ground reaction forces (GRF), kinematic and electromyographic data of 20 healthy subjects were recorded during reactive hopping in a special sledge jump system for seven different acceleration levels: three acceleration levels with lower than normal gravity (0.7g, 0.8g, 0.9g), one with gravitational acceleration (1g) and three with higher acceleration (1.1g, 1.2g, 1.3g). RESULTS The increase of the acceleration from 0.7g to 1.3g had no significant effect on the preactivity of the leg extensors, the leg stiffness and the rate of force development. However, it resulted in increased peak GRF (+15%), longer ground contact time (+10%) and increased angular excursion at the ankle and knee joints (+3°). DISCUSSION Throughout a wide acceleration range, the subjects were able to maintain a high leg stiffness and perform reactive hops by keeping the preactivity constantly high and adjusting the muscle activity in the later phases. In consequence, it can be concluded that the neuromuscular system can cope with different acceleration levels, at least in the acceleration range used in this study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of prophylactic ankle and knee braces on leg stiffness during hopping

During human movement, the leg can be represented as a mechanical spring, with its stiffness potentially contributing to sports performance and injury prevention. Although many individuals perform athletic activities with joint stabilizers, little is known about the effects of prophylactic lower extremity braces on leg stiffness. The objective of this study was to investigate the effect of ankl...

متن کامل

Leg stiffness: comparison between unilateral and bilateral hopping tasks.

Leg stiffness is a predictor of athletic performance and injury and typically evaluated during bilateral hopping. The contribution of each limb to bilateral leg stiffness, however, is not well understood. This study investigated leg stiffness during unilateral and bilateral hopping to address the following research questions: (1) does the magnitude and variability of leg stiffness differ betwee...

متن کامل

Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics

This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time), and leg muscle performance (power, stiffness, strength). Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0-5, 5-10, and 0-10 m intervals to assess acceleration. Leg po...

متن کامل

The Relationship Between Core Stability and Leg Stiffness in Male and Female Athletes

Purpose: Core stability and leg stiffness are two determinant mechanisms in athletic performance and risk injury. This study aimed to investigate the gender differences and relationship of these two factors in athletes. Methods: In this cross-sectional study, core stability and leg stiffness of 12 male and 12 female Iranian squash players at national level were examined utilizing McGill’...

متن کامل

Effects of ankle and knee braces on leg stiffness during hopping

In a spring-mass model (Figure 1-A), the stiffness of the leg spring (leg stiffness; Kleg) is thought to be an important factor in musculoskeletal performance in hopping, running and jumping [1]. Despite the fact that many athletic activities are performed with joint stabilizers, little is known about the Kleg with ankle and/or knee braces. A previous study demonstrated that neither ankle tapin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 45 10  شماره 

صفحات  -

تاریخ انتشار 2012